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Abstract—Revealing the correspondences and relationships
between physiological signals is attractive for bioinformatics and
human-computer interaction. Time alignment is a straightfor-
ward way to figure out correspondences between time sequential
data. However, alignment between multimodal physiological sig-
nals is hard to achieve because the similarity metrics are difficult
to define if the two physiological signals being investigated are
non-linearly correlated, misaligned or quite different in mor-
phology. In this paper, we propose a generalized time alignment
method for multimodal physiological signals which (i) learns the
feature extractions on physiological signals in a generalized way,
and (ii) enables learned features to be in a coordinated space
where the similarity between sub-components from two signals
can be defined. Furthermore, we applied our alignment based
multimodal feature fusion on an evaluation model to perform
emotion recognition tasks on the DEAP multimodal physiological
signal dataset. The experimental results show that the alignment
based feature fusion outperforms the non-aligned feature fusion
in most cases.

Index Terms—Deep Learning, Physiological Signals, Canonical
Correlation Analysis, Alignment, Recurrent Neural Network,

I. INTRODUCTION

A. Motivation

Human beings comprehend the word through multiple sen-
sory modalities like vision and hearing. Similarly, multimodal
physiological signals are primary channels for an intelligent
system to understand humans, especially the physiological
states of bodies. With the help of wearable or wireless sensors,
physiological information can be continually measured and
stored as physiological signals. Physiological signals have
been widely and successfully used in medical diagnosis [9],
activity recognition [14] and entity authentication [6] for many
years. Recently, complex activity recognition [34], affective
computing [51] and other research areas are actively inves-
tigated by utilizing multimodal physiological signals where
complementary and supplementary information is sourced.
Multiple signals are extracted and fused to improve final
system performance.

In order to model multiple physiological signals better, it
is worthwhile to find the relationships and correspondences
between their sub-components. Previous work has already
shown the existence of such correlation by finding oscillatory
coupling and the time delay between the central nervous
system and peripheral physiological signals through frequency
analysis [19]. A power assistant system designed for the
disabled person by using Electromyography (EMG) signals
estimated from electroencephalography (EEG) signals, shows
the significance of investigating relationships across physio-
logical signals [28], [29].

However, as a key topic in multimodal learning, sub-
component alignment between multimodal physiological sig-
nals could not be realized in a generalized way in the literature.
There are two main challenges to achieve such alignment.
The first one is that two physiological signals may have very
different morphology [43]. In this case, similarity (alignment
metrics) between sub-components is hard to define. Secondly,
there are not labeled datasets for multimodal physiological
signals alignment. Unlike multimodalities in other areas like
audio-visual, where alignment of sub-components could be
labeled by the human, even experts in the physiological area
could not clearly figure out the correlated sub-parts across mul-
timodal physiological signals. Thus, alignment for multimodal
biosignals could only be achieved in an unsupervised manner
and evaluation metrics for alignment results is also lacking.

On the other hand, most previous works related to fusing
information from multimodal physiological signals did not use
any hidden alignment information in series sub-elements. Such
correlations are successfully utilized in other semantic modal-
ities like audio-visual, visual-text, audio-text by recent works
which are based on temporal models [24], [45], [48]. However,
as for physiological signals, simple concatenation of features
from misaligned pairs could suffer from asynchronization [12].
To avoid this, most feature extraction procedures and feature
fusion procedures deal with physiological signals as a whole in
the literature. Therefore, misalignment limits model choices in
terms of information fusion strategies for physiological signals
learning.
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B. Contribution

In order to tackle the above challenges, we propose a gen-
eralized multimodal physiological signal alignment methodol-
ogy, which makes the following contributions:
• In data processing and feature extraction phases, we

propose a uniform way, called Physio2Video, to gener-
ate multimodal physiological feature videos. Thus, the
multimodal continuous physiological signals alignment
problem can be converted to the video frames alignment
problem.

• The proposed frame encoders based on unsupervised
learning can non-linearly project the physiological feature
frames into a common space where time warping is
feasible.

• Our alignment method can be considered as the guidance
of feature level information fusion in multimodal learn-
ing. The experiment results show that alignment based
feature fusion performs better than misaligned feature
fusion of sub-elements.

II. RELATED WORKS

A. Align Multimodal Series

Alignment on multimodal series aims to explicitly find
optimal matches between their sub-frames [5].

Dynamic time warping (DTW) like dynamic programming
methods are widely used unsupervised ways to archive tem-
poral alignment of time series [31]. Their aim is to find the
optimal time warping for instances according to manually
predefined similarity metrics between them. The most common
similarity measurement way is computing distance between
frames from two series based on Frobenius Norm (Euclidean
norm). Given two time series, X = [x1, x2, x3, ..., xnx

] ∈
Rd×nx and Y = [y1, y2, y3, ..., yny ] ∈ Rd×ny with the same
feature space d, DTW aims to optimize:

arg min
Px,Py

‖XPx − Y Py‖2F

s.t. Px ∈ {0, 1}nx×n

Py ∈ {0, 1}ny×n

(1)

where Px and Py denote alignment path matrices (filled with
binary values) for time frames in X and Y respectively
[citation at here]. There are n alignment pairs after DTW.
Considering the joint alignment path matrices Pxy = PxP

T
y

and any k-th alignment pair k(ix, iy), Pxy(ix, iy) is 1, in which
0 ≤ k < n, 0 ≤ ix < nx, 0 ≤ iy < ny . All other positions in
Pxy are filled with 0. Although there are exponentially many
possible ways to align X and Y with respecting to nx and ny ,
DTW can get the optimal solution of Equation 1 in O(nxny)
by using dynamic programming. Fig. 1 gives an example
of dynamic time warping between two time series. Some
approximate dynamic time warping algorithms like FastDTW
have achieved linear time and space complexity [37]. Note that
we consider F2-norm as the similarity here but it should be
set according to real cases. For example, Tapaswi et al. [10]
constructed a character based similarity to realize video to
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Fig. 1. One example of dynamic time warping. In the left part, sub-points
in red time series and blue time series are aligned by dotted lines. Alignment
matrix Pxy filled with 0 and 1 in the right part infers the alignment path.
Each 1 in Pxy stands for one dotted line (alignment pair) in the left.

text alignment. In another work [2], audio-to-text alignment is
done by dynamic programming based on a manually created
sound-to-grapheme correspondence matrix.

Generally, it is hard to directly define the similarities
between sub-components from multi-view sets. Canonical
correlation analysis (CCA) can be used to project multi-
view moralities into a common feature space with maximized
Pearson correlation where the similarity can be easier to
define. Therefore CCA based DTW, named as canonical time
warping (CTW) is a generalized way to apply DTW like
dynamic programming methods on different multidimensional
features. CTW was firstly proposed by Zhou and Torre where
they accurately aligned two behavioral time series spatially
and temporally on CMU-Multimodal Database [53]. They
also extended CTW to generalized time warping (GTW)
which allow alignment between more than two multimodal
series [52]. Given two time series X ∈ Rdx×nx , Y ∈ Rdy×ny

with varying feature dimensions and time frames, CTW has the
follwing objective function after combining CCA and DTW:

argmax
Wx,Wy,Px,Py

corr(WT
x XPx,W

T
y Y Py)

s.t. Wx = [w1
x, ..., w

d
x] ∈ Rdx×d,

Wy = [w1
y, ..., w

d
y ] ∈ Rdy×d,

Px ∈ {0, 1}nx×n , Py ∈ {0, 1}ny×n ,

(2)

where Wx and Wy are linear projections and Px and Py are
the alignment matrices for projected WT

x X and WT
y Y . The

correlation maximization problem can be transformed as a
trace maximization problem [53]:

argmax
Wx,Wy,Px,Py

trace(WT
x XPxP

T
y Y TWy)

s.t. WT
x XPxP

T
x XTWx = I,

WT
y Y PyP

T
y Y TWy = I,

Wx = [w1
x, ..., w

d
x] ∈ Rdx×d,

Wy = [w1
y, ..., w

d
y ] ∈ Rdy×d,

Px ∈ {0, 1}nx×n , Py ∈ {0, 1}ny×n ,

(3)

The optimum is attained by fixing projections (or fixing
alignment path) and optimizing the other one alternately. The
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solutions to compute the biggest trace in Equation 3 are
inherited from the Singular Value Decomposition (SVD) based
CCA optimization solution in [20]. Algorithm 1 describes the
CTW optimizing procedure which is similar to that in [53].
Σij represents the cross-covariance and ri is the regularization
parameter.

Algorithm 1 CTW optimization algorithm
Input: X̄(centralized X), Ȳ (centralized Y)
Output: Wx,Wy, Px, Py

begin
Initialize Wx ∈ Rdx×d,Wy ∈ Rdy×d

repeat
Get alignment matrix Px, Py by applying dynamic time

warping on (WT
y X̄,WT

y Ȳ ).
Σ̂xx = 1

dx−1X̄PxP
T
x X̄T + rxI

Σ̂yy = 1
dy−1 Ȳ PyP

T
y Ȳ T + ryI

Σ̂xy = 1
d−1X̄PxP

T
y Ȳ T + rxyI

M = Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy

U, V = Singular Value Decomposition(M)

Wx = Σ̂
−1/2
xx U

Wy = Σ̂
−1/2
yy V

until trace(M) maximized
end

To address the incapability of CCA in exploring non-linear
relationships between modalities, deep canonical correlation
analysis (DCCA) replaced the linear transformation in CCA
by deep neural networks to extract non-linear correspondence
or similarity [1]. Inspired by DCCA, Yin and Chen proposed
a deep metric learning autoencoder to enable extracted deep
spatiotemporal information of human motion to be compared
and aligned [50]. Recently, researchers presented the deep
canonical time warping (DCTW) method which used two
CNN encoders to automatically learn deep representations
of series where the representations are maximally correlated
and could also be aligned by DTW like dynamic program-
ming [39]. They successfully applied DCTW on audio and
visual streams with less alignment error compared to CTW
and GTW. There are no closed-form solutions like CTW, back-
propagation is used to optimize DCTW objective.

Similar to DCCA and DCTW, other recent works also use
deep learning methods to find similarity or correspondence
measurement metrics between multi-views but in a supervised
manner. Karpathy and Li align sentence snippets to the visual
regions by learning a shared multi-modal embedding where
similarity could be computed [25]. The image region em-
bedding and sentence embedding are produced through Con-
volutional Neural Network (CNN) and Bidirectional Recur-
rent Neural Network (BRNN). Temporal Regression Localizer
(CTRL) align sentences with temporal ordering information
to video clips with offsets [16]. They also use a deep visual
encoder and a deep sentence encoder to find the coordinated
representation of multimodalities.

As for physiological signals, alignment is often used be-

tween signals coming from the same source or having similar
morphology. For instance, DTW algorithm was used to detect
Alzheimer disease by aligning gait (foot movement) signals
collected from patients with Alzheimer disease and healthy
people [40]. Researchers [15] have used Euclidean distance
based similarity to align partially correlated signals (Electro-
cardiogram, Arterial Blood Pressure and Photo Plethysmogram
) with similar repetitive morphology and make temporal seg-
mentation based on the alignment path. However, there is not a
generalized way in the literature to align physiological signals
which may not share similar morphology.

B. Physiological Feature Extraction by Deep Learning

Deep learning based methods have become popular in
recent years as alternative feature extraction methods to obtain
physiological features [21]–[23]. One category is end-to-end
models which directly consider the sampled data as input. A
CNN model encodes every 30second window data in a long
sleeping signal (EEG, EMG, EOG) into one feature vector and
combines every output of each window together to feed into
the classifier [11]. This simple model achieves state-of-the-
art performance on sleep stage classification. A recent work
recognizes the corresponding visual stimulus of the input EEG
signals where a LSTM encoder is trained to extract useful
representations for classification [38]. In another category,
physiological signals are transformed into spectrograms before
being input into deep neural networks where both time domain
and frequency domain information are contained. EMG signals
collected on the arm are transformed into spectrograms and
a convolutional neural network is applied to perform image
classification with hand gesture labels in [13]. Another similar
work predicting limb moving also uses spectrograms as the
model input but splits the spectrogram into continuous time
steps [47]. Each time step will be put into a LSTM network
to get a representation for the original signal.

C. Multimodal Fusion

Previous surveys [5], [18] have shown that the main cate-
gories of multimodal fusion are feature level fusion, decision
level fusion, and hybrid fusion. In early multimodal learning
work [4], [35], [44] based on traditional machine learning
methods like Support Vector Machine (SVM), Linear Discrim-
inant Analysis (LDA), Naive Bayes, and K-Nearest Neighbor
(KNN), decision fusion is applied because these classification
methods could not tackle multimodal data with different dis-
tribution and morphology. Classifiers are trained separately on
different modalities. Nevertheless, if feature selection methods
like Kernel Discriminant Analysis (KDA) and Correlation
based Feature Selection are introduced, the selected feature
can be fused to perform feature level information fusion [17],
[30], [41]. Hybrid fusion is successfully performed on the
CMU speaker identification task in this work [46] by training
a multi-stream hidden Markov model (HMM) on audio, video,
and fused audio-video features.

With the rise of deep learning technology in recent years,
feature level fusion has been extensively studied as joint
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representation learning. Audio-Video speech recognition per-
formance has been improved significantly in the former by
learning a joint feature representation of audio and video
through autoencoders. [32]. Time sequential features can be
fused by RNN model if they are time aligned. Audio-video
information is fused by LSTMs in these works [33], [45] to
perform audio-video emotion recognition tasks.

However, the performance of multimodal fusion between
temporal features will suffer if the different modalities are
misaligned [46]. Addressing multimodal fusion on misaligned
time series has not been solved in the literature. This paper
will give a general solution for misaligned multimodal physi-
ological series fusion.

III. DATA PROCESSING MODEL

Our technique is to convert multimodal physiological sig-
nals to multiple physiological feature videos, an approach
we term Physio2Video. It allows us to convert the signals
alignment problem into a video frames alignment problem.
The Physio2Video approach uses separate techniques for cre-
ating videos from EEG signals and other peripheral physi-
ological signals. In this case, EEG2Video, EMG2Video and
GSR2Video are described below.

A. EEG2Video

The EEG2Video idea is from Bashivan’s work [8]. As
shown in Figure 2, a small period of EEG signals is trans-
formed to a colored image with the help of electrodes location
information. For each piece of EEG signal, three frequency
bands are extracted using Fourier Transform. They are theta
(4-7Hz), alpha (8-13Hz) and beta (13-30Hz) bands which
are commonly used in EEG analysis [7]. Then the average
of each frequency will be calculated to assign three scalar
value for each channel (electrode). Next, a polar projection
is used to project 3-D electrode position to 2D position,
thereby creating a 2D map. Finally, the Clough-Tocher scheme
is used to interpolate blank areas. In this way, not only
time-frequency information but also location information for
different channels of EEG signals are extracted.

In our case, a long EEG trial will be cut into small pieces
by time windows with 2-second window size and 1.5-second
overlaps. For each time window of EEG signal, it will be
transformed into an EEG image, which is considered as one
frame of EEG video. Overlaps enable the generated feature
EEG image video to show the continuous change. We remove
the 3 seconds pre-trial time for each trial in DEAP (60 seconds
left) so that the tensor shape for each EEG feature video is

X = (seq len× channelx ×H ×W )

where seq len = 117, channel = 3, H = 32 and W = 32.
seq len is the fame numbers which is 117 for each EEG video.
channelx means three scalar value for theta, alpha and beta
bands. H and W are height and width respectively for one
EEG feature video frame. Figure 3 shows an example of
produced EEG feature video which consists of EEG feature
time frames with continuous changes.

Fig. 2. EEG to image [49].

.....

t1 t2 t3 t4 t5 t6 t7

Fig. 3. Time Frames in EEG feature video with continues change.

B. EMG2Video and GSR2Video

The idea of converting peripheral physiological signals into
feature videos is inspired by recent success of spectrogram
representation for the wave-like data [47]. EMG2Video and
GSR2Video are derived from all of the parameters of the
spectrogram variables. Similar to the EEG2video, a long
peripheral physiological signal trial is cut into small pieces
with overlaps, using the same settings as EEG2Video. For each
piece of the peripheral physiological signal which is generated
by this sliding window, the waveform signal is transformed
into spectral coefficients by using Fourier Transform on each
window. As a result, a time-frequency spectrogram is created
for the whole physiological signal by using the Fast Fourier
Transform (FFT). For a certain type of physiological signal,
the number of spectrograms with time-frequency domain in-
formation should be the same as channel numbers of the
physiological signal. The length of the time axis and the size of
the frequency axis are considered as the time frame numbers
and the feature size for each time frame. For example, we
have two channels for EMG signals so that there are two
spectrograms showing time-frequency information for each
channel (Figure 4). The video for EMG can be shown as the
following tensor:

Y : (seq len, channely, F )

where seq len = 117, channely = 2, F = 128. seq len
and channely refer to the video frame numbers and video
channel numbers. F is the number of coefficients which are
computed in a time-frequency frame. We use all coefficients
(128) produced by FFT here.

GSR feature video could be generated in the same way but
with different channel numbers for each time frame, that is:

Z : (seq len, channelz, F )

where channelz = 1 because we only have one channel for
GSR signal in our case.

IV. GENERALIZED ALIGNMENT MODEL

The goal of our generalized alignment model is to find the
alignment between sub-components of two physiological sig-
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Fig. 4. EMG time-frequency spectrograms for two EMG signal channels.
Each time step in the time domain contains frequency domain information
from two different EMG signal channels, which are stored in two vectors
with size F . As for GSR signals, we can generate a similar spectrogram to
present GSR feature video.

nals with different modalities. Before proceeding with align-
ment, we have already obtained three time series signal feature
video X , Y , and Z for EEG, EMG, and GSR respectively by
following the data processing phase. The alignment results
between sub-frames of the three feature videos correspond to
the alignment results between sub-components of multimodal
physiological signals.

A. Physiological Signal Feature Frame Encoders

We use our proposed feature video frame deep encoders to
non-linearly project two signal feature videos into a coordi-
nated feature space, where alignment between sub-components
could be performed. Our encoders for the above videos are
all based on a CNN approach although they vary between
different signal feature videos.

Given an EEG feature video X ∈ Rseq len×channelx×H×W ,
we perform 4 layers of 2 dimensional (2D) convolution based
neural network with batch normalization, pooling and dropout
techniques over each time frame x ∈ Rchannelx×H×W to
perform EEG feature frame encoding. For each time step
(frame) of EMG feature video Y ∈ Rseq len×channely×F

and GSR feature video Z ∈ Rseq len×channelz×F , there
is only one frequency domain feature vector with size F
for each channel. Thus, the input of EMG frame encoder
and GSR frame encoder should be y ∈ Rchannely×F and
z ∈ Rchannelz×F . We apply 1D convolution over the input
frames with 5 convolution layers in total for both EMG
and GSR cases. The embedding results from the three frame
encoders are all one dimension feature vectors of size of 64.
Detailed parameters of building blocks for the encoders are
shown in Table I. We use Fx, Fy and Fz to donate encoders
for X , Y and Z respectively.

B. Alignment and Canonical Correlation Loss

We have three series of vectors Fx(X) ∈ Rd×nx , Fy(Y ) ∈
Rd×ny and Fz(Z) ∈ Rd×nz with the same dimension size d

TABLE I
THE DEEP CNN STRUCTURES FOR EEG FRAME ENCODER AND EMG
FRAME ENCODER. PARAMETERS cin, cout, k, p AND s IN BRACKETS
REFER TO INPUT CHANNEL NUMBERS, OUTPUT CHANNEL NUMBERS,

KERNEL SIZE, PADDING AND STRIDE. THE GSR FRAME ENCODER HAS
THE SAME STRUCTURE AS THE EMG FRAME ENCODER BUT WITH cin = 1

IN THE FIRST BLOCK.

EEG frame encoder EMG frame encoder
Input (3× 32× 32) Input (2× 128)

Conv2d Conv1d
(cin = 3, cout = 16, (cin = 2, cout = 16,

k = 3, p = 1) k = 3, p = 1)
BatchNorm2d, ReLU BatchNorm1d, ReLU

Maxpooling2d(k = 2× 2, s = 2), Maxpooling1d(k = 2, s = 2),
Doupout(0.1) Doupout(0.1)

Conv2d Conv1d
(cin = 3, cout = 16, (cin = 2, cout = 16,

k = 3, p = 1) k = 3, p = 1)
BatchNorm2d, ReLU BatchNorm1d, ReLU

Maxpooling2d(k = 2, s = 2), Maxpooling1d(k = 2, s = 2),
Doupout(0.1) Doupout(0.1)

same as last block same as last block
same as last block same as last block

same as last block
Flatten into a one dimension vector

Output 64 Output 64

2D
 

convolution
 

1D
  

convolution

...

... C
anonical C

orrelation Loss 

 embedding  series of EEG video frames

 embedding  series of EMG video frames

EEG Feature Video

EMG Feature Video

Alignment
Path

Fig. 5. The structure of the generalized alignment model. Video frame
embedding is generated for each frame by the feature video encoders Fx and
Fy . The unsupervised training process achieves alignment of video frames
and learning frame feature encoders jointly.

after performing feature video encoding. In order to learn an
appropriate non-linear deep encoding and achieve reasonable
alignment, we try to optimize the canonical correlation of
two aligned embedding series. Given EEG frames embedding
Fx(X) and EMG frames embedding Fy(Y ) as an example:

argmax
Fx,Fy,Px,Py

corr(Fx(X)Px, Fy(Y )Py)

Px ∈ {0, 1}nx×n , Py ∈ {0, 1}ny×n ,
(4)

where Px and Py is the alignment path through dynamic
time warping. Notice that nx and ny are equal in our case
because they are processed from the same trial with the same
sliding window and step size. However, n is not less than nx

and ny since alignment will copy frames if they are aligned
more than once. As mentioned before, there are no closed
form solutions for deep CNN based encoders Fx, Fy . We use
back-propagation here and the negative canonical correlation
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between aligned frame embedding series from X and Y is
considered as the loss function:

Lcorr = −corr(Hx, Hy). (5)

where Hx = Fx(X)Px ∈ Rd×n and Hy = Fy(Y )Py ∈
Rd×n. similar to the CTW optimization methods introduced,
we consider H̄x and H̄y as centralized matrices and construct
a matrix M = Σ̂

−1/2
xx Σ̂xyΣ̂

−1/2
yy , where

Σ̂xx =
1

d− 1
H̄xH̄x

T
+ rxI,

Σ̂yy =
1

d− 1
H̄yH̄y

T
+ ryI,

Σ̂xy =
1

d− 1
H̄xH̄y

T
.

(6)

The canonical correlation between two aligned video frame
embedding series is the trace normalization of M . Thus our
final canonical correlation loss can be written as:

Lcorr = −corr(Hx, Hy) = ‖M‖tr = tr(MTM)−1/2. (7)

During the training process, two encoders will be optimized
gradually to enable two embedded series sourced from the
same stimulation to be more correlated and make their align-
ment more intuitive. Figure 5 shows the training pipeline to
learn EEG feature video frame encoder and EMG feature video
frame encoder cooperatively by using canonical correlation
loss on two aligned embedded series.

V. ALIGNMENT EVALUATION MODEL

Since there is no dataset labeling sub-components’ align-
ment for multimodal physiological signals, we could not
evaluate our generalized alignment methodology directly. In
this case, we propose a feature fusion model targeting multi-
modal time series classification and compare the classification
accuracy of our alignment based fusion and other feature
fusion strategies.

A. Align Video Frames Based on Trained Frame Encoders

We also take EEG and EMG case as an example. After
the unsupervised training procedure, we get two video frame
encoders which enable frame embedding series to be aligned in
a coordinated space. Assuming Fx(X) ∈ Rd×nx and Fy(Y ) ∈
Rd×ny are projected embedding series, alignment path Px ∈
{0, 1}nx×n and Py ∈ {0, 1}ny×n can be obtained by using
DTW. The alignment path for frame embedding series corre-
spond to the alignment for the original signal feature videos.
Therefore, signal feature videos X ∈ Rnx×channelx×H×W

and Y ∈ Rny×channely×F can be aligned into X ′ ∈
Rn×channelx×H×W and Y ′ ∈ Rn×channely×F .

B. Task-Related Frame Encoders

The trained encoders mainly extract coordinated repre-
sentations across multimodal physiological signals since the
training objective is to maximize the canonical correlation of
encoding results. With respect of the evaluation tasks, it is im-
portant to extract task related representations for classification

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

M1

Mj

Mi

M2d

M1 Mi Mj M2d....................
max pooling 

a1 a2 an1 an

.....

.....

.....

multimodal signals representation:

.....

Fig. 6. Illustration of the frame embedding series encoder. Concatenated blue
and green blocks refer the aligned frame embeddings sourced from EEG and
EMG. Max pooling operation extract the maximum value over each channel
from concatenated hidden states to form the joint representation of EEG &
EMG.

performance. Thus, we use extra frame encoders (Fx
′, Fy

′)
for aligned videos (X ′, Y ′ ) and optimize them based on the
gradient produced by the final classification objective. They
share the same structures with previous encoders (Fx, Fy) so
that the vector size of frames embedding are d for both EEG
and EMG. Since the input videos (X ′, Y ′ ) are already aligned,
we could intuitively concatenate the aligned frame embedding
pairs into ai =

[
Fx
′(x′i), Fy

′(y′i)
]
, i ∈ Rn to perform sub-

component feature fusion.

C. Aligned Embedding Series Classification

For a sequence of n concatenated time frame embed-
dings {ai}i=1,...,n, a Bidirectional Long Short Term Memory
(LSTM) network with max pooling is applied to encode the
aligned frame embedding series into fixed-size representations
which are related to specific tasks. The encoder structure is
shown is Figure 6. The hidden states in this encoder during
forward propagation could be written as:

−→
h i =

−−−−→
LSTM i(a1, ..., ai),

←−
h i =

←−−−−
LSTM i(ad, ..., ai),

hi =
[−→
h i,
←−
h i

]
,

(8)

where
−→
h i and

←−
h i refer the hidden state for the forward

LSTM and backward LSTM at the time step i. hi is the is
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the concatenation of
−→
h i and

←−
h i. We choose the maximum

value (max pooling) over each dimension among n hidden
states ({hi}i=1,...,n) to form a fixed-size representation for
the input embedding series. In our case, the dimension size
for each aligned and concatenated frame embedding ai is
2d and we keep the same size for the hidden state in each
LSTM unit. Therefore, the multimodal representations after
max pooling for aligned frame embedding series can be written
as r ∈ R4d because of the bidirectional structure. Finally,
two fully connected layers are applied to compute the cross-
entropy loss.

VI. EXPERIMENTS

A. Datasets

We used the DEAP multimodal dataset [26] to perform
and validate our proposed alignment method. This emotion
analysis dataset records physiological signals from 1280 trials
on 32 healthy participants where 40 trials were conducted by
each participant. Every participant gives ratings between 1 to
9 on four criteria(Arousal, Valence, Dominance, and Likeness)
to 40 different music videos separately. Arousal and Valence
are two criteria widely investigated in affective computing.
The emotion classification tasks on the DEAP dataset are com-
monly considered as two-class classification problems for each
criterion where subjective-ratings are assigned into high and
low with the threshold of 5. Their preprocessed data contains
40 signal channels for each trial with 128 Hz sampling rate
and 63 seconds length including 3 seconds pre-trial time in
the beginning. There are 32 channels of EEG signals (based
on 10-20 system) and other 8 peripheral physiological signals
including 2 EOG channels, 2 EMG channels, 1 GSR channel,
etc.

B. Experiment Setup

We perform experiments on three physiological signals
from the DEAP dataset: EEG, EMG and, GSR. Following
the Physio2Video methods, we prepare three kinds of phys-
iological signal feature videos for the above three signals
respectively. Since there are 1280 trials for 32 participants
(40 trials for each one) in the DEAP dataset in total, we get
3× 2018 feature videos.

Two video frame encoders are trained for each video pair:
(EEG & EMG), (EEG & GSR), and (EMG & GSR) according
to the canonical correlation loss defined at Equation 7, so
in total 6 encoders are trained. We use Stochastic Gradient
Descent (SGD) as the optimizer with a learning rate of 0.001,
a weight decay of 5×10−4 and a mini-batches size of 16. We
use video frame encoder pairs in this training to enable video
frames to be aligned after non-linear embedding.

The evaluation model trained on DEAP emotion classifica-
tion task is determined based on the 5-fold cross-validation on
all 1280 trials. The limited sample size is the main reason to
choose cross-validation. Except for the classification accuracy,
F1 score is also measured to evaluate the robustness of models
because of the binary classification target. We also use SGD
optimizer here with the same learning rate, weight decay and

EEG & EMG

EEG & GSR

EMG & GSR

Fig. 7. Alignment path for physiological signals in three different alignment
cases.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 3 4 5 6 7

1 2 3 4 5 5 7 8

1

6 7 84

3 5 1 4 6 8 2 6

5 8 1 3 6 7 2 4

Alignment path

Alignment based fusion

Random fusion

Basic fusion

881

Fig. 8. Given the alignment path, alignment based feature fusion will
concatenate corresponding pairs in alignment path. If one feature vector is
aligned more than once, it will be copied. Basic fusion will simply concatenate
two feature vectors with the same time step. Random fusion will shuffle two
series and concatenate feature vectors with the same new time step.

mini-batch size as the training of above encoders used for
alignment. If the training accuracy for each epoch decreases,
we multiply the learning rate by 0.9. The training will be
stopped if the learning rate is less than 5× 10−6.

C. Results

Figure 7 shows the alignment path examples for three types
of multimodal physiological signals alignment cases based on
our pre-trained video frame encoders defined in Section IV.
These real alignment paths correspond to the alignment demo
in Figure 1.

Before evaluating the above alignment results, we perform
emotion recognition on each single physiological feature video
by using a RCNN model which has the same modeling
pipeline as our evaluation model but without concatenating
other features in Figure 6. The unimodal performance of the
RCNN model on each signal are shown in Table II.
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TABLE II
5-FOLD CLASSIFICATION ACCURACY AND F1 SCORE FOR EEG, EMG,

AND GSR

Arousal Valence

accuracy F1 accuracy F1

EEG 0.6149 0.7040 0.5657 0.6972
EMG 0.5758 0.7301 0.5807 0.7338
GSR 0.5761 0.7279 0.5539 0.7121

We perform our RCNN based evaluation model with three
different feature fusion strategies (including our alignment
based fusion) on DEAP emotion recognition tasks. There
are two baseline fusion strategies: Base Fusion and Random
Fusion. Base Fusion will naively align video frames which are
in the same time step and concatenate their corresponding em-
beddings which are extracted from task related CNN encoders.
Random fusion will shuffle time steps of frames randomly for
each input feature video and randomly concatenated two frame
embeddings. Figure 8 visualizes the three different fusion
mechanisms.

In the (EEG & EMG) feature fusion case in Table III,
our alignment based fusion model performs best for Arousal
classification on both accuracy (0.6583) and F1 (0.7423)
criteria. It did not achieve the best accuracy on Valence but
is the most robust one in terms of F1 score. Table IV and
Table V show the results of the fusion cases of (EEG &
GSR) and (EMG GSR) respectively. The results in these two
tables are similar with Table III where alignment based fusion
performs best on three measurement (accuracy for Arousal,
F1 for Arousal, F1 for Valence) among four measurements
in total. Also, we could observe that our methodology always
performs best on accuracy and F1 score for Arousal.

TABLE III
5-FOLD CLASSIFICATION ACCURACY AND F1 SCORE ON BASELINE

MODELS AND ALIGNMENT BASED MODEL BY USING EEG AND EMG

Arousal Valence

accuracy F1 accuracy F1

Basic 0.6361 0.7403 0.6211 0.6255
Random 0.6294 0.7024 0.5609 0.7031

Alignment 0.6583 0.7423 0.6133 0.7265

TABLE IV
5-FOLD CLASSIFICATION ACCURACY AND F1 SCORE ON BASELINE

MODELS AND ALIGNMENT BASED MODEL BY USING EEG AND GSR

Arousal Valence

accuracy F1 accuracy F1

Basic 0.6273 0.6751 0.5781 0.6901
Random 0.5986 0.71846 0.6016 0.6789

Alignment 0.64378 0.7204 0.5977 0.7209

Based on three multimodal fusion tables and the unimodal
performance table before, we could see that adding one more

TABLE V
5-FOLD CLASSIFICATION ACCURACY AND F1 SCORE ON BASELINE

MODELS AND ALIGNMENT BASED MODEL BY USING EMG AND GSR

Arousal Valence

accuracy F1 accuracy F1

Basic 0.5906 0.7094 0.5641 0.7046
Random 0.5922 0.6973 0.5498 0.7094

Alignment 0.5945 0.7101 0.5586 0.7127

Handcrafted features
based

Results

[26] Arousal (acc: 0.5700, F1: 0.5330) , Valence
(accuracy: 0.6270, F1: 0.6080)

[3] (participant-specific) Arousal (accuracy: 0.7306, F1: -), Valence
(accuracy: 0.7314, F1: -)

[51] (participant-specific) Arousal (accuracy: 0.7719, F1: 0.6901), Va-
lence (accuracy: 0.7617, F1: 7243)

Deep features based Results
[42] Arousal (accuracy: 0.5120, F1: -), Valence

(accuracy: 0.6090, F1: -)
[27] Arousal (accuracy: 0.6420, F1: -), Valence

(accuracy: 0.5840, F1: -)
[36] Arousal (accuracy: 0.6590, F1: -), Valence

(accuracy: -, F1: -)
our EEG & EMG fusion Arousal (accuracy: 0.6583, F1: 0.7432), Va-

lence (accuracy: 0.6133, F1: 7209)
TABLE VI

PERFORMANCE COMPARISON WITH OTHER WORKS.

modality will improve the original unimodal classification ac-
curacy on Arousal and Valence regardless the added modality
and feature fusion strategy in most cases. This demonstrates
the efficiency of multimodal fusion.

Many other works in Table VI investigated multimodal
fusion based emotion recognition on DEAP dataset. However,
their experiments setup and model evaluation metrics are every
different because there are no evaluation standards for the
DEAP dataset.

VII. DISCUSSION

Although some work [3], [51] in Table VI achieved over
0.7 classification accuracy on the DEAP dataset, it can not be
concluded that their multimodal fusion frameworks are better
than ours. Their experiment sets are based on participant-
specific data which means that the final results are the averaged
performance on each participant. This is much easier since
the variation of data distribution in one subject is smaller
than across subjects. This type of experimental setting is
common when the model relies on manually defined features
like (Power Spectral Density) PSD and Relative Power Energy
(RPE) because the manually defined feature usually varies
across different participants. It is hard for a model to extract
deep information if the model is not deep neural network
based. Therefore we list another three deep neural network
based models [27], [36], [42] to compare with our results. All
of them trained their models by using cross-subjects settings.
The results show that our alignment based fusion model is
competitive compared with others.
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Considering the unbalanced emotion labels of Arousal and
Valence in the DEAP dataset, the classification accuracy is
less representative than the F1 score to evaluate the classi-
fication performance [51]. Therefore our model still shows
its effectiveness even though the alignment based fusion does
not get the best classification accuracy on Valence because we
achieved best on each F1 criteria in all three fusion occasions.

Although temporal information has been lost for these
randomly fused features, the neural network could still extract
time irrelevant features which are useful for emotion recogni-
tion. Also, randomly shuffled feature series will be considered
as different input samples. In this case, random fusion will
augment the training dataset dramatically. Therefore, we find
random fusion performs better on accuracy than our alignment
based method on Valence criteria in Table IV, but this small
difference is likely due to noise being just 0.004 difference.

In Table III and Table V, basic fusion works better on the
classification accuracy of Valence, again only on accuracy, and
the difference is 0.008. It may again be noise or caused by an
inappropriate step size. In Figure 9, the sub-intervals from the
two stream correspond with each other in the real case if they
have the same letter (we use A as an example). As we can
see in this figure, The real interval of misalignment is 0.25
second, but the smallest step we have to perform is 0.5 which
is the step size in our Physio2Video technique. It will keep
the misalignment in this case after we perform time warping.
However, using a too small step size will increase the total
time step numbers in the series. This will dramatically increase
the computation cost of the training process of generalized
alignment model in Figure 5.

VIII. CONCLUSION

We present a generalized alignment methodology for mul-
timodal physiological signals. As prepossessing, wave-liked
digital signals are transformed into physiological feature
videos by our Pysio2Video technique. We trained two deep
CNN based frame encoders to convert two physiological
feature videos into two vector series where their canonical
correlations are maximized. Our alignment results of vectors
in the coordinated space represent the alignment for their
corresponding video frames. In order to evaluate the alignment
results, we introduced the RCNN based multimodal fusion
model to perform emotion recognition on the DEAP dataset.
Experiments results show that our alignment based multimodal
feature fusion performs better than the other two baseline
feature fusion models with potential or actual misalignment.
Thus, we can see that our alignment result could relieve the
misalignment problem in the multimodal fusion domain.
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